Ground Fault Detection Improvement Study: Mitigation Methods

Greg Ball
DNV-KEMA
(formerly BEW Engineering)

Solar ABCs GFDI Webinar June 25, 2013

Summary of recommended mitigation methods

Enhanced ground fault monitoring

- Residual current monitoring
- · Residual current monitoring with trip
- · Electronic sensing in ground circuit
- Isolation monitoring

Sensitized overcurrent protection

Reduce fuse size in ground fault circuit

Other systemic measures

- Targeted annual O&M practices
- Arc-fault detection

Shown in authors' order of preference for effectiveness and value Modifications by qualified personnel only and must involve equipment manufacturers!

Method 1: Residual current measurements

With alarm

Installed at inverter entrance on positive and negative feeder circuits

• Effect: Major increase in the sensitivity and flexibility of ground fault detection/mitigation

•Pros:

- Proven method for detecting blind spot conditions
- Alarm gives operator options for response; reduces impact of false trips

•Cons:

- Requires rewire of array conductors through current transducers, and monitor interface
- Does not interrupt the fault current.
- May require installation of a new enclosure to access existing conductors
- •Cost: Moderate to high
 - Possible to run multiple circuits through single CT

Method 2: Residual current measurements With auxiliary trip

Similar to method 1, except relay is used to trip inverter off via E-stop, auxiliary trip, or shunt-breaker

• **Effect:** Major increase in the sensitivity of ground fault detection and interruption

•Pros:

- Proven method for detecting blind spot conditions.
- Interrupts fault current under blind spot condition
- Data averaging can mitigate false trips caused by lightning or other transients

•Cons:

- Requires rewire of array conductors through CTs, possible add' I enclosure.
- Nuisance trips possible
- Inverter trip wiring could have certification/ warranty implications
- Cost: Moderate to high
 - Possible to run multiple circuits through single CT

Method 3: Electronic current sense relay in ground circuit

High accuracy sensing is installed in series with ground fault fuse or breaker circuit. Shunt or specialized CT required. Applicable for larger inverters.

• Effect: Major increase in the detection sensitivity and mitigation flexibility (~100 mA sensitivity)

•Pros:

- Relays can be programmed to trigger on current and duration levels
- Can be coordinated with auxiliary trip

•Cons:

- Requires rewire of ground fault fuse circuit
- False trips possible
- May impact inverter certification must have approval from manufacturer.

•Cost: Moderate

Possible inverter manufacturer retrofit

Method 4: Isolation monitoring with periodic check

Install isolation monitor, implement periodic checks

• Effect: Capable of detecting low insulation conditions and ground faults on either pole

•Pros:

- Proven method for detecting blind spot fault conditions. (Similar to international non-isolated system protection)
- Prevents inverter start up until faults are corrected
- Consistent with evolving UL and IEC standards

•Cons:

- More significant changes needed in inverter to implement monitoring, logic control and ground bond contactor
- •Cost: High (in most cases)
 - Involves inverter manufacturer retrofit

Method 5: Reduce fuse size in ground fault circuit

Replace fuse.

• Effect: Minor increase in the sensitivity of ground fault detection. ~10x less sensitive than Methods 1-4.

•Pros:

Easy, inexpensive retrofit

•Cons:

- Not as sensitive as electronic ground current monitoring
- May conflict with other inverter functionality
- May impact inverter certification
- May result in nuisance trips

•Cost: Low

Method 6: Targeted operations and maintenance practices

Routine visit by qualified personnel to perform tests

• Effect: Capable of identifying blind spot faults

•Pros:

- O&M can find undetected faults and degraded insulation
- Annual operation and maintenance inspections are useful for many reasons beyond the blind spot.
- Cons:
- Requires routine visit by technicians to perform tests.
- Faults that occur between inspections may still go undetected.
- Not a blind spot cure

•Cost: Moderate, but recurring

Method 7: Use of arc-fault detection

Series arc fault current interrupters (AFCIs) installed in contactor combiner boxes or at inverter feeder input circuits

• Effect: Can isolate circuits when arc is detected

•Pros:

- Isolating strings when arc is detected may lessen any fault severity
- May isolate 2nd dangerous fault that follows a blind spot fault (becomes series arc).
- Detects other fire-causing faults

•Cons:

- AFCI may not be able to detect blind spot faults
- Series AFCIs are not evaluated for response to arcing faults to ground.
- Limited commercial availability of proven equipment

•Cost: High (expected)

